
SLAIT
Secure Language
Assembly Inspection Tool

Dr. Marius Silaghi
Michael Bratcher
Maria Linkins-Nielsen

Goal and Motivation
“Develop a secure, streamlined way to inspect snippets of code at a low level of

abstraction”

❖ Anyone programming or observing
their high level program in low level
languages (MASM, Bytecode) put
their devices at risk

❖ Devices require you lower its
security levels to run these
programs

❖ We wish to provide an environment
that:
➢ Eliminates risk to host machines
➢ Allows users to inspect hardware

changes made by their programs
➢ Allows users to compare previous

iterations and other programs’
effects on the hardware

Approach (Key Features)

● Submit x86 or Java bytecode snippets

● Analyze safely without exposing your system

● Mark key points in code to observe registers/flags

● Capture states before/during/after execution

Clear Visualization

Secure Inspection

Isolated Execution
● Run your code in a Docker-based sandbox

● Prevent damage to your personal machine

● See an organized timeline of state changes

● Compare runs with varied inputs

Targeted Tracking

Novel Features & Functionalities

● Secure, on-demand, & low-level code

inspection

● Docker sandbox keeps execution

isolated

● Track registers & flags at key points

● Compare runs with clear

visualizations

Tools
Docker

Angular

Parsing Libraries

★ Containerized Secure Environment
★ Consistent between separate instances

★ Widget based UI for front-end
★ Typescript based library

★ Identifying where user actions are
placed post compilation

Challenges
Docker and Angular
● Specifically Requested
● Little Experience with Docker

(OS 161)
○ No experience with API or

CLI interactions
● No Experience with Angular

○ No Experience with
TypeScript

Potential Solution:
Research and Develop and Procedure

Documentation
OR

Find a justifiable alternative

Challenges
Backend Setup and Communication
● No Tangible Experience with

Backend Server OS
● Ubuntu Server
● Interactions with Docker within the

environment

Potential Solution:
Research and Develop and
Procedure Documentation

Challenges
Parsing Actions Between High and Low Level
● Mandatory for basic functions
● How do we pass off information of

actions without affecting any
potential runtime? (or as minimally
as possible)

● Bad solutions are easy to implement
but will affect the runtime of the
program

Potential Solution:
Parsing Library Investigation

and choosing a good
language for the backend

Milestone 1 Goals

Tool Selection
● Choose frontend tools (Angular, visualization libraries)
● Choose backend tools (Docker setup, server framework)
● Select code parsing/compilation support - x86 & Java bytecode

Initial Demos
● Initial testing with x86 code in Docker
● Display sample register/flag data in Angular
● Test basic frontend to backend communication

cont.

Investigation of Technical Challenges
● Configuring docker and sandbox permissions
● Ensuring flagged code sections translate correctly after compilation
● Establishing angular build/test pipeline
● Configuring backend compilation for one language

Documentation
● Create Requirements Document
● Create Design Document
● Create Test Plan

Milestone 2 Goals

Implement, test, and demo
● User input of code snippets
● Run of x86 & Java bytecode in Docker with flag/register tracking
● Angular visualization of registers/flags
● Error handling

● Implement basic Java bytecode support
○ Test frontend parsing between different languages

● Implement Docker security (restricting system calls)
● Update Requirement and Design Documents

Milestone 3 Goals

Implement, test, and demo:
● Marking registers/flags at code locations and comparing state changes
● Timeline view of register/flag states
● Comparative run mode (different initialization states)
● Enhanced error reporting and flag tracking

● Polish Angular frontend visualization widgets
● Implement frontend comparison of multiple executions using visual graphs
● Continue frontend–backend integration (end-to-end flow)
● Prepare semester 1 progress presentation and documentation

Milestone 1 Task Matrix
Task Michael Maria

Compare and select tools Frontend tools Backend(Docker, server)

“Hello World” demos Angular component with
sample data

Testing minimal code within
Docker

Resolve technical issues Setup angular build/test Configure docker sandbox
& compile x86 test

Frontend-Backend Demo Connect angular API Establish backend API

Requirement Document Write 50% Write 50%

Design Document Write 50% Write 50%

Test Plan Write 50% Write 50%

The end.
Questions?

